PFAS and Sediments: Status and Implications

WPPA Fall Seminar 2023 Presented by Erik Naylor

Collaborators: Jennifer Benaman, PhD; John Connolly, PhD; David Glaser, PhD; Beth Lamoureux; Wen Ku; Sarah LaRoe, PhD; Dan Opdyke, PhD, PE; Deirdre Reidy; and Mark Larsen, Anchor QEA

Compare and Contrast (PCBs v. PFAS)

Parameter	PCBs	PFAS
CERCLA Hazardous Substance	Yes	Not yet
Washington Hazardous Substance	Yes	Yes
Importance of Degradation Products	Focus on original contaminant	Precursor transformations to PFAA (e.g., PFOS) very important
Mobility in Sediments	PCBs bind tightly to sediment (high K _{oc})	Most bind loosely to sediment (low to moderate K _{oc})
Bioaccumulates in Fish	Yes	Yes—to a point
Persistence in Fish Tissue	Long (years)	Short (weeks to months)
Existing Fish Advisories	Yes	Yes
Sediment Cleanup Levels	Yes	Not yet (WA evaluations in progress)
Likely Driver for Sediment Remediation	Very strong driver	Not likely a driver in most cases (some potential exceptions)
Elevated Background Concentrations	Yes (well-developed data set)	Likely (more information needed)
Impacts to Upland Beneficial Reuse Opportunities	Yes	Yes

Importance of Precursors and Transformations

Lower Koc (Higher Mobility) Higher Koc (Lower Mobility)

PFOS Is Rapidly Depurated by Fish

- Much faster than for most PCBs
- Elimination via gills is more significant than for other bioaccumulative chemicals
- Without precursors, PFAA concentrations decline quickly due to low sorption to sediments and high depuration in fish

Estimated Depuration of PFOS and PCBs from Trout

PFOS Sediment Recovery: 1D Model Insights

Status of Sediment Cleanup Standards

- No federal standards or guidance (EPA or USACE)
- No promulgated state or regional cleanup standards
- Washington: Department of Ecology evaluation is ongoing
 - Sediment Management Standards
 - Likely 2-4 Year process
 - Includes literature evaluation, data collection/analysis, risk evaluation
 - Uncertain outcome at this time

What Type of PFAS are in the Sediment?

- Precursors in sediments may provide a long-term source of PFOS and other PFAAs
- Sediments as a significant source of PFOS/PFAAs only if sediments are a reservoir of certain precursors
- Precursor types vary by sorptive strength & transformation rate

Sediment Flux

Present

Future

Sediment Flux

Sediment Recovery of PFOS with Precursors Present: 1D Model Insights

- Precursors may be a consequential long-term source of PFOS under certain conditions
- Relevance of residual PFOS levels will depend on site-specific factors

Influence of Transformation Rate and Sorption

- Active sediment management might be warranted with the presence of...
 - Certain precursors
 - High concentrations
 - Appropriate transformation conditions
- Not clear yet how common these conditions are in real world sediments

Sediment Background

Work in progress on sediment background by USACE

Preliminary survey

PFAS found in 26/26 sediment samples

Soil Background (Northeast U.S.)

PFOA (ug/kg)	Vermont	New Hampshire	Maine
Maximum	4.9	4.1	5.29
Median	0.4	0.8	Not reported
Percent Detect	91%	96%	65%

PFOS (ug/kg)	Vermont	New Hampshire	Maine
Maximum	9.7	5.4	4.35 (urban) 5.32 (non-urban)
Median	0.7	1.0	Not reported
Percent Detect	100%	100%	81% (urban) 63% (non-urban)

Sediment studies by Guilherme Lotufo (guilherme.lotufo@usace.army.mil)

Image Source: www.pexels.com

Mississippi River Beneficial Reuse Example USACE DMMP 2020

- PFAS in sediment: <1 to 3 ug/kg
 - Soil managed by upland beneficial reuse
 - Minnesota Soil Reference Values
 - 2020 Values: for PFAS = 330 to 63,000 ug/kg
 - Updated Minnesota Values: 41 ug/kg (PFOS)
- Washington Soil Guidance: 0.55 ug/kg
- New York Soil Cleanup Objectives: 1-3 ug/kg
- Potential Impacts for upland reuse options depending on final screening levels

Considerations for Sediment Projects

Key Take-Aways

- PFAS are different from other bioaccumulatives like PCBs
- Fate and transport is complicated and still under study
- PFAS may not be significant sediment contaminants except in certain instances
- PFAS regulations are evolving rapidly
- Clear sediment guidance may be several years away
- Background levels suggest PFAS are likely widespread (more information is needed)
- Multiple considerations will affect project approach

THANK YOU

Erik Naylor

Managing Scientist Anchor QEA enaylor@anchorqea.com

Falk, S. K. Failing, S. Geogii, H. Brunn, and T. Stahl, 2015. "Tissue Specific Uptake and Elimination of Perfluoroalkyl Acids (PFAAs) in Adult Rainbow Trout (*Oncorhynchus mykiss*) After Dietary Exposure." *Chemosphere* 129:150–156. (Slide 5)

Liu, J., and S. Mejia Avendaño, 2013. "Microbial Degradation of Polyfluoroalkyl Chemicals in the Environment: A Review." *Environment International* 61:98–114. (Slide 3)

Niimi, A.J., and B.G. Oliver, 1983. "Biological Half-lives of Polychlorinated Biphenyl (PCB) Congeners in Whole Fish and Muscle of Rainbow Trout (*Salmo gairdneri*)" *Canadian Journal of Fisheries and Aquatic Sciences* 40(9):1388–1394. (Slide 5)