

WPPA Fall Marina Committee Mtg Capital Investments in Docks

OUTLINE

Steps in Renovation and Reconstruction of Marina Facilities

- 1. Planning
- 2. Permitting
- 3. Design
- 4. Construction

1. Planning

- Renovate in Place or Reconfigure
- Expansion
- Improve Slip Mix and Sizes
- Inwater and Upland Infrastructure
- Funding

2. Permitting

- Timeline
- Layout Impacts
- Material Choices
- Mitigation and Restoration

3. Design

- Dock Materials
- Sea Level Rise
- Flood & Seismic Considerations
- Shorelines

4. Construction

- Costs
- Contractors
- Best Management Practices
- Monitoring, Work Windows, Env.

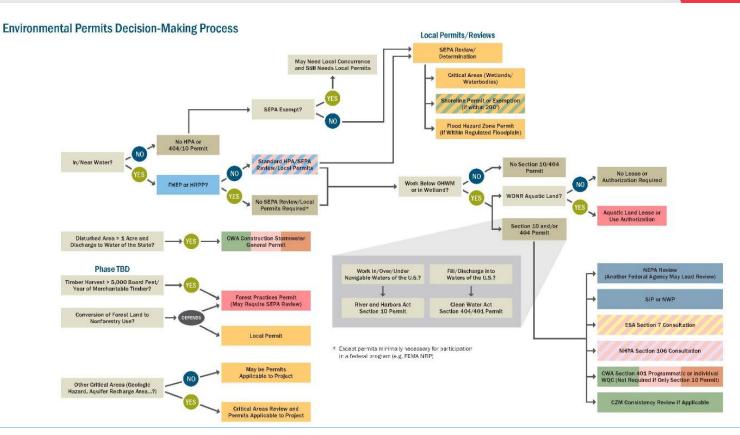
- Renovation in Similar Footprint
 - Allow for multi-phased renovation
 - Potential simpler permit process
 - Less support infrastructure mods required
 Can update utilities, amenities
 - Existing breakwater and basin to remain
 - Limited ability to update slip sizes to match newer market demands
 - Could eliminate a dock lateral and increase finger lengths, fairway or remove finger floats and use side tie for large vessels

- Replace and Reconfigure in Same Basin
 - Allows for change in slip mix
 - Demand for longer, wider slips
 - Result in fewer slips unless expand footprint
 - May need to modify support infrastructure
 - Access piers, new utility source or locations, parking

Expansion

- Allow for multi-phased renovation
- Complicated permit process
- Potential for Significant infrastructure changes
 - · Access piers, gangways, utility supply, parking
- New breakwater and dredging may be required
- Increase number of slips in updated market sizes
- Potential for significant mitigation requirements
 - Habitat improvements, shoreline and habitat restoration, public access

Funding


- Marina infrastructure is expensive
- Funding should be allocated well in advance of need for replacement
- Market moorage rates have not kept up with infrastructure costs
- Grants available for transient moorage, cleanup, economic development,
 public access, etc.
- Generally, no grants available for permanent recreational moorage facilities

Permitting

Permitting

- Continues to be a key driver of schedule and design elements for marina infrastructure projects
- Regulatory and environmental considerations should be incorporated throughout planning and design
- Previous requested considerations are often included in updated regulations and DNR lease requirements
 - For example use of grating in dock systems, limit on use of submerged treated-wood in WACs
- Continue to be new environmental considerations over time

Permitting

- Key Environmental Considerations for Design
 - Driving changes in types of materials for piling, decking, floats,
 and other elements
 - Balance of overwater coverage
 - Continued increase in required habitat and shoreline restoration associated with marina infrastructure projects

Design – Slip Mixes

- Changes in size of inwater slips
 - Fewer to no slips under 30'
 - Larger slip widths to accommodate larger beams
 - Variable sizes for flexibility

Design – Amenities

- Boaters are looking for more than just a place to keep their boat
 - More electrical power, Wi-Fi service
 - Convenient boat sewage pumpout facilities
 - Clubhouses, restrooms, laundry
 - Safety and security
 - Retail, restaurant, other services
 - Aesthetics and character of a place

Design

- Changes in types of materials for piling, decking, floats, and other elements
 - Piling
 - Hydraulic hammer preference, treatment
 - Floats
 - Fifty-percent open space
 - Decking
 - Grating with sixty percent open space

Design

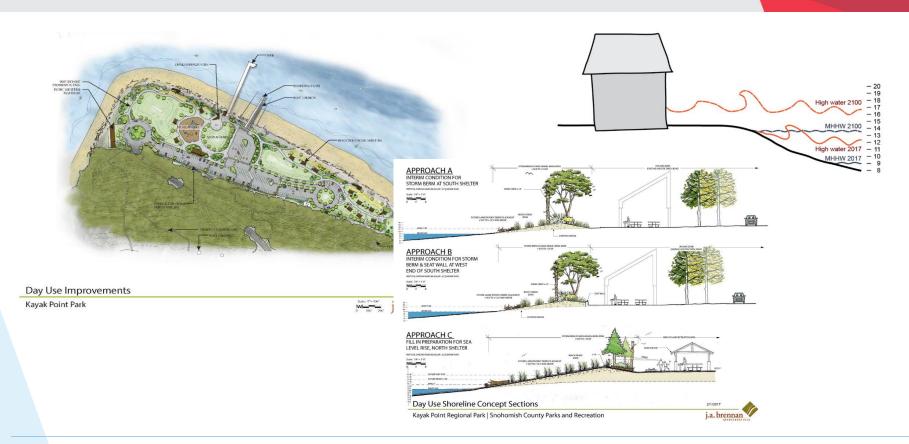
Floats

Decision on structural system and flotation

Design

- Floats and Piers
 - Decision on decking

Design – Sea Level Rise


- Sea Level Rise Considerations
- Pile Top Elevations
- Pier Deck Elevations
- Bulkhead Heights
- Landside elevations
 - Parking, buildings
- Fill Elevations
- Utility pad elevations

Sea Level Rise Risk Level

- Low, Moderate, High
- By Location
- Number of Years, Life Cycle

PROJECTED RELATIVE SEA LEVEL CHANGE FOR 2100 (feet, averaged over a 19-year time period)							
Location	Vertical Land Movement Estimate	Greenhouse Gas Scenario	Central Estimate (50%)	Likely Range (83-17%)	Higher magnitude, but lower likelihood possibilities		
					10% probability of exceedance	1% probability of exceedance	0.1% probability of exceedance
Tacoma (47.3N, 122.4W)	-0.5 ± 0.2	Low	2.1	1.5-2.7	3	4.6	7.9
		High	2.5	1.9-3.3	3.6	5.3	8.8
Neah Bay (48.4N, 124.6W)	1.1 ± 0.3	Low	0.5	-0.1 - 1.2	1.5	3.1	6.3
		High	1	0.3 - 1.7	2	3.8	7.4
Taholah (47.4N, 124.3W)	0.3 ± 0.5	Low	1.3	0.6-2.1	2.4	3.9	7.1
		High	1.7	1.0-2.6	2.9	4.6	8.1

Design – Sea Level Rise

Design – Flood and Seismic

- Increased Emphasis on Flood and Seismic Design Criteria
 - Jurisdictions requiring flood analysis of pier structures
 - American Society of Civil Engineers preparing design Guidelines for Seismic Design of Piers and Wharves
 - Liquefaction of soft marine soil layers can create large loads on inwater pile-supported structures

Design – Shoreline Restoration

Design – Shoreline Restoration

Waypoint Park - ASBPA Best Restored Beach 2020

Design – Shoreline Restoration

Design – Breakwaters

Construction

Cost of Marina Infrastructure

- Increased significantly over the past five to ten years
- Steel, flotation, timber, concrete, composites, fiberglass
- Polystyrene foam is a petroleum product and price fluctuates with oil pricing
- Floats can range from \$150 to \$250 per square foot
- Piles costs depend on size and type and treatment
 - steel piling under 24" diameter range from \$12K to \$20k each

Construction

- Marine Contractors
 - Fewer mid to small size marine contractors
 - Limited number of float manufacturers in region
- Means and Methods
 - Tighter environmental controls
 - Allowable work window
 - Monitoring for listed species during construction
 - Restrictions on number of pile strikes by hammer per day

Conclusion

Plan Ahead

- Marinas are Expensive, Early and Varied Sources of Funding is Critical
- Make informed decisions on Replace, Reconfigure, Expand, & Configuration.
- Coordinated Multi-Faceted Approach
 - Integrate planning, permitting, and design considerations
 - Consider overall timeline, phasing, continued operations
 - Don't underestimate & coord environmental and regulatory requirements
 - Be creative and adaptable,

WPPA Fall Marina Committee Mtg Capital Investments in Docks

