

Pacific Northwest

PNNL Resilient Ports Project Supporting Resilient Electric Supply at Maritime Ports

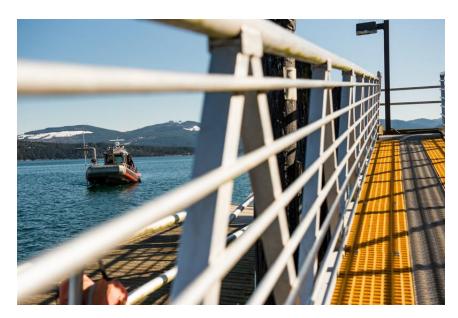
December 6, 2023

Shannon Idso

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-191946

Maritime Decarbonization at PNNL


Mission Statement: We transform the world through courageous discovery and innovation.

- PNNL is a U.S. Department of Energy (DOE) Office of Science National Laboratory with core capabilities including chemical and material sciences, engineering, biological and earth sciences.
- PNNL manages the DOE's only coastal science lab in Sequim, WA.
- Maritime decarbonization is a cross-cutting effort across various divisions at PNNL including Coastal Sciences and Energy, Buildings & Infrastructure.
- This work aligns with our lab's objective to Decarbonize End Uses and with the federal Ocean Climate Action Plan (2023).
- Key projects include:

Pacific

Northwest

- The Port Electrification Handbook
- Green Corridors Grid Impact Analysis
- RV Resilience Hybrid Electric Vessel

Pacific

Northwest

Why Electrify Ports?

- case of a natural disasters.
- of global carbon emissions [2], roughly equivalent to the annual emissions of Germany.
- 60,000 premature deaths annually [3].
- **Energy Independence** Electrification, coupled with renewable generation and storage (e.g., microgrids), can provide security.

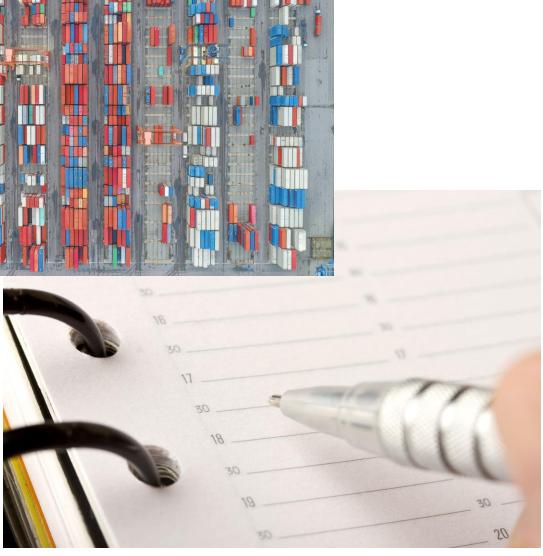
- [1] American Association of Port Authorities
- [2] International Council on Clean Transportation: Maritime Shipping
- [3] Rutherford et al. 2019 "Silent but Deadly: The Case of Shipping Emissions"

Resilience – Cargo activities at US seaports generate over \$5T in economic activity, equal to 26% of the U.S. economy [1]. They are also gateways to critical supplies, particularly in the

Climate – Maritime activities account for 3%

Environmental Justice – PM emissions from shipping are responsible for approximately

localized energy to ports and benefit national



Resilient Ports Project

- The objective of this effort is to support the resilient decarbonization of the nation's electrical infrastructure leveraging networked microgrid technologies. Maritime ports are used as an operational use-case because of their size, complexity, and resource mix.
- The outcome broadly includes two efforts:
 - Resilient Microgrids Case Study Seattle City Light (complete)
 - Port Electrification Handbook (expected) completion Feb 2024)

Resilient Microgrids Case Study

Based loosely on the Port of Seattle

Port Background:

- Deepwater port critical to regional economy
- Leading electrification and plans to expand
- Constrained by space and utility capacity Project Overview:
- Evaluated 7 microgrid scenarios
- Analysis from an electrical and dynamic stability perspective
- Assumed ideal scenarios (e.g., required permissions are in-place)

DERs	Notes
PV - Aquarium	Planned since 2023
BESS	Plug-in hybrid ferry charging
EVCS	LDV, MDV, HDV charging, cargo handling equipment
Biodiesel Generator	Generation backup
Hydrogen	Generation and storage - local and shipboard

Image Source: https://www.portseattle.org/cruise-ships

Electric Loads	Notes
Aquarium (existing)	May need critical
Coast Guard (existing)	Critical load during
Ferries (future)	Estimated plug-in
Fire Station (existing)	Critical load during
Cruise (future)	"Cold-ironing" of c
STS Cranes (existing)	Electrified ship to
Refrigerated Units (existing)	Electrified contain

power

- ng disaster operations
- hybrid ferry charging load
- g disaster operations
- cruise ships
- shore cranes
- nerized refrigeration units

Pacific Northwest

Microgrids 101

- **Microgrid** a self-contained power grid that can operate independently or connected to a utility grid.
- Microgrids typically contain:
 - Distributed Energy Resources
 - Energy Storage
 - **Distribution Infrastructure**
 - Microgrid Controller

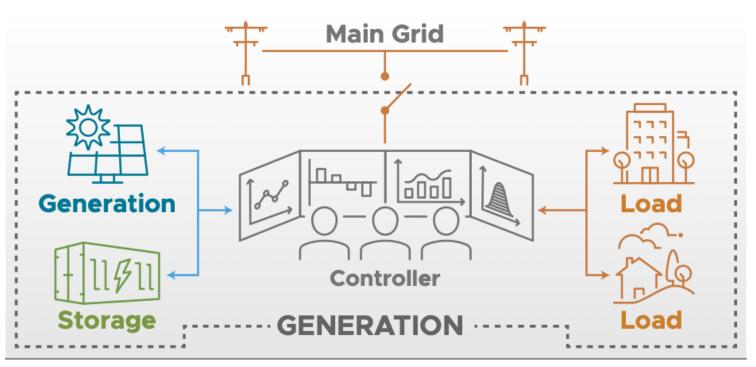
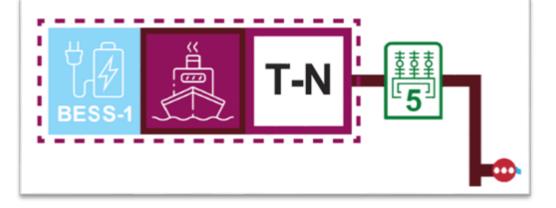
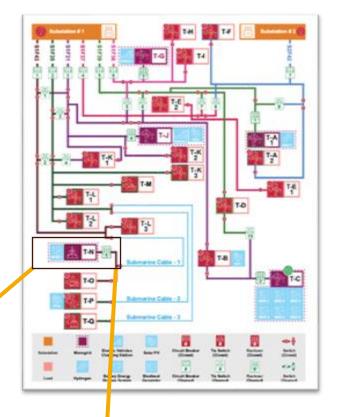


Figure 1. Microgrid components (dashed box) and switch connection to the main grid (top)

Figure 2. Example components of a microgrid

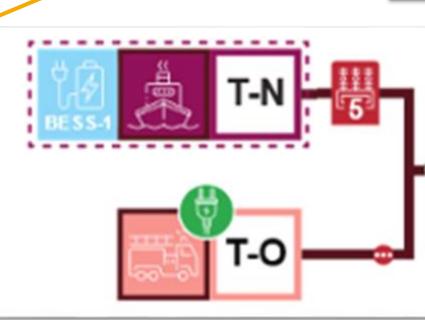

Standard Microgrid Scenario

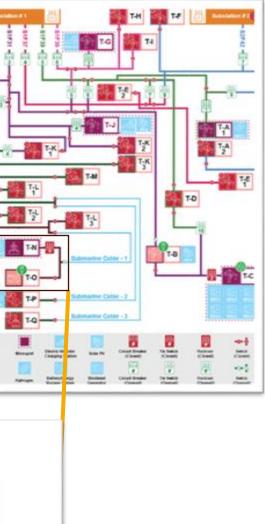

- Loss of both substations → 5 independent microgrids
- Microgrids are primarily engaged in a resilience scenario:
 - Solar and hydrogen powering critical port operations
 - Battery powering limited ferry charging

Pacific

Northwest

- Reflects traditional microgrids operations that enable capabilities in a resilience scenario without sharing or redundancy in operations
- Each microgrid is limited by its energy storage and generation capabilities (e.g., ferry charging available until BESS is depleted)

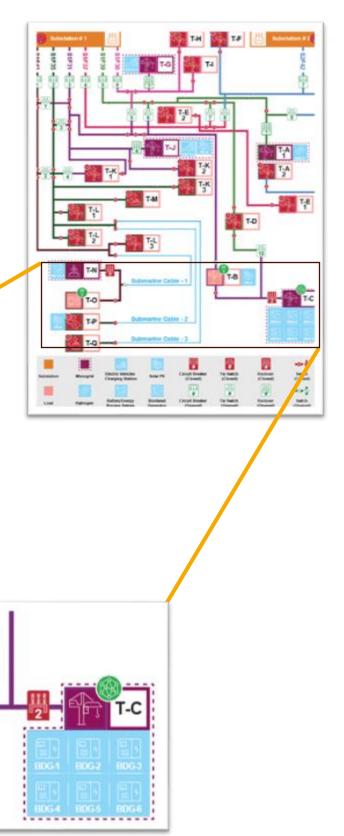



Pacific

Northwest

Community Microgrid Scenario

- **Community microgrid** a microgrid that can utilize non-microgrid distribution infrastructure to power select infrastructure, particularly in critical scenarios
- In this example, a community microgrid extends battery power that is typically reserved for ferry charging to the fire station
- Utility coordination is key as utility distribution lines and switchgear are used



Networked Microgrids Scenario

- Networked microgrids a group of microgrids that are physically separate but interoperable, can share loads and generation across boundaries
- Networking between ferry microgrid and cargo handling equipment microgrid enables BESS charging from biodiesel generators to charge ferry
- Integrating PV can power critical operations and charge BESS
- Utility coordination is key as utility distribution lines and switchgear are used

T-B

Submarine Cable - 1

Submarine Cable - 2

Submarine Cable - 3

Port Benefits of Microgrids

- Resiliency:
 - Power critical infrastructure during bulk power system outage
 - Increase redundancy of power availability
 - Enhance port energy independence
- Economics:
 - Provide flexibility to integrate cost effective energy solutions
 - Enable participation in available energy markets
 - Avoid high costs of power outages
- Climate:
 - Decrease emissions by integrating renewables and generators powered by cleaner fuels
 - Integrate DERs to support new electrical loads

Pacific Northwest

Port Electrification Handbook

- **Goal:** Develop a reference to aid ports in their clean energy transition.
- Timeline: Currently in-development, planned completion February 2024.
- As outlined currently, handbook topics include:
 - Port Electrification Overview
 - > Microgrids
 - > Electrification technologies (e.g., shore power, charging infrastructure)
 - Alternative fuel vehicles, vessels, and associated supportive infrastructure
 - > Port renewable energy options including solar, wind, and marine energy
 - Planning and design considerations
 - > Addressing cybersecurity and resiliency in port energy transitions
 - Case studies and technoeconomic analysis
- We are currently conducting outreach and soliciting feedback from Ports and maritime professionals via 1x1 meetings, Guiding Port Partners, and a survey.

Questions?

Shannon Idso Blue Economy Specialist shannon.idso@pnnl.gov

Project Team

Wei Du Long Vu Jing Xie Eran Schweitzer Sheik Mohiuddin Monish Mukherjee Priya Mana

Dexin Wang Xu Ma Majid Aldosari Nikolai Drigal Kiana Brown Kevin Schneider Frank Tuffner

